Címke: Hőkamera

Miért használjunk hőkamerát?

Az infravörös termográfia lehetőséget ad kezdeti problémák észlelésére, mielőtt azok meghibásodáshoz vezetnének. Ipari környezetben egyes berendezések problémái észlelhetők szokatlan rezgések, vagy zajok útján, de sok más probléma nem mutat ilyen egyértelmű tüneteket. Sok villamos probléma felfedezhető hővizsgálattal, ami nélkül a berendezés tönkremenne, vagy súlyos villamos veszélyhelyzetet teremtene. Mennyezetek és falak nedvesedése nagyon nehezen ismerhető fel, mielőtt az olyan súlyossá válik, hogy a szerkezet sérülését, vagy tönkremenetelét okozza.

Mindezen esetekben egy infravörös kamera fel tudja gyorsítani a diagnózist, csökkenti – esetleg elkerülhetővé teszi – a nem kívánt leállást, és minimalizálja az épület és a benne lévő javak károsodását.

Az infravörös termográfia számos előnyt szolgáltat mivel felhasználható:

  • A legtöbb berendezés esetén
  • Adatgyűjtésre kellően biztonságos távolságból veszélyes környezetben
  • Nagy felületek pl. falak, mennyezetek és tetők gyors pásztázására
  • Adatgyűjtésre a termelés zavarása nélkül
  • Speciális helyeken fellépő rendellenességek gyors azonosítására
  • Problémák érzékelésére a hiba bekövetkezése előtt

Ezek az előnyök számos különleges hasznot hajtanak hibakereséskor és megelőző, vagy előrejelző karbantartás végzésekor. Ezek:

  • Megnövelt biztonság. A műszaki személyzet gyakrabban tud berendezést vizsgálni közvetlen érintkezés, vagy az üzem zavarása nélkül. Ugyancsak lehetőségük nyílik légcsatornák, vagy mennyezet vizsgálatára létra, vagy emelőszerkezet használata nélkül.
  • Javított megbízhatóság. A pontosabb információk birtokában könnyebb a karbantartó csoportok számára a probléma kijavítása azt megelőzően, hogy azok nagymértékű veszteséget okoznának, ezzel a terven kívüli leállások jelentősen csökkenthetők.
  • A javítások megbízhatóságának növelése. Az elvégzett alkatrész-, vagy szerkezet javítást követő gyors infra kamerás ellenőrzéssel a szakember igazolni tudja, hogy a javítás sikeres volt, vagy beazonosíthat kiegészítő javítást szükségessé tevő kisebb jelzéseket.
  • Új berendezések sikeres üzembe helyezése. Egy új motorvezérlő központ, villamos szolgáltatás, tetőszerkezet, gőzvezeték, klímarendszer, vagy épület hőszigetelés megvalósításakor az infravörös termográfia dokumentálni tudja az átadáskor fennálló állapotot. Ez képez alapot a kivitelezés műszaki tartalmának igazolására, vagy összehasonlításra használható későbbi állapotvizsgálatnál. A hőkép ki tudja mutatni az esetleges kivitelezési hibákat, amik így rögtön korrigálhatók, vagy monitorozhatók a hiba későbbi kijavításáig.
  • Jobb termelékenység és termékminőség. A termográfiát megelőző, vagy előjelző karbantartásra használva minimalizálható a berendezések működési rendellenessége, vagy hibája, így optimális termelési hatékonyság és biztonság tartható fenn.
  • Berendezés öregedés monitorozás. A hőkép készítővel monitorozhatjuk a berendezések állapotát és meghatározott tűrésekhez viszonyított üzemi jellemzőit. Ez segítheti esetleges rendellenes működés, vagy meghibásodás előrejelzését, lehetővé téve az elöregedett alkatrészek javítását, vagy cseréjét, mielőtt azok teljesen tönkremennek, és potenciális leállást okoznak.

    Hőkamerák a Global Focus Kft. kínálatában.

    https://www.globalfocus.hu/termekkategoria/hokamera/


    d31930a680e562e713d8a34655e39658


Miért van szükség termográfiai képzésre és képesítésre?

A hőkamera kezelőszerveinek használatát viszonylag könnyű elsajátítani. Alapképzéssel és gyakorlatokkal könnyen megtanulhatjuk, hogy mi az egyes gombok szerepe, hogy kell a menüben navigálni, hogyan fókuszáljunk, és hogy készítsünk felvételeket. Ami nehezebb, hogy hogyan készítsünk olyan képet, ami a probléma pontos diagnosztizálásához a nekünk szükséges információt szolgáltatja, és hogyan értelmezzük helyesen a készített képet.


Ti400
Az ehhez hasonló képek nehezen készíthetők el és értelmezhetők megfelelő oktatás nélkül. A kép Fluke Ti 400-al készült.


A termográfusnak szükséges oktatás terjedelme az alkalmazástól és a szervezeti követelményektől függ. Például az első vonalban alapszűrést végző technikusnak kevesebb képzésre van szüksége, mint a képek értelmezésével is foglalkozó munkatársának.

A képzéssel hozzájuthatunk azokhoz az elméleti és gyakorlati eszközökhöz, amelyekkel a legtöbbet tudjuk kihozni kameránkból. Elméleti ismeretek megszerzésével és a termográfia tudományának elsajátításával egyaránt képesek leszünk megérteni e technika lehetőségeit és korlátait. Gyakorlati szempontokat is megtanulhatunk, beleértve a különböző vizsgálatok elvégzésének legcélszerűbb módját és a vizsgálatok biztonságos végrehajtását.

Tapasztalt oktató által nyújtott képzéssel, ami kiterjed a nemzeti szabványosítási ismeretekre is, biztosak lehetünk a legjobb eredmények elérésében, minimális hibázás mellett.

Az alábbi táblázat körvonalazza a termográfiai képzettség három szintjét.

A termográfus oktatási és képzettségi szintjei

  1. szint: Ez a szint ideális azoknak, akiknek még új a termográfia. Elvégzése képessé tesz kiváló minőségű adatgyűjtésre és adat minősítésre a rögzített megy/nem megy vizsgálati kritériumok alapján.
  2. szint: Azoknak szól, akik már gyakorlatot szereztek a termográfiában és a hibakeresésben. A 2, szint – együtt a már megszerzett tapasztalattal – a berendezés beállítására, kalibrálására, az adatok értékelésére, jelentések készítésére és 1. szint képesítésű munkatársak felügyeletére tesz alkalmassá.
  3. szint: A legfejlettebb termográfusi szint. A következőkre képesít: vizsgálati eljárások és súlyossági kritériumok kifejlesztése, a vonatkozó jelzésrendszer interpretálása, termográfiai programok irányítása, beleértve a képzést, vizsgálatot és annak felügyeletét, valamint egy program beruházási költségének és megtérülésének kiszámítását.

Bár a termográfusi minősítés beruházást igényel, ez tipikusan magas hozamot biztosító beruházás. A képzett termográfusok magasabb minőségi szintű, technikailag következetesebb vizsgálatokat produkálnak. Képzetlen termográfusok gyakrabban követnek el költséges és veszélyes hibákat, mint például a felfedett hibák kritikus jellegének túl-, vagy alábecslése, vagy a hibák feletti elsiklás.

Az Egyesült Államokban a termográfiai képesítést a munkáltató bocsátja ki összhangban az American Society for Nondistructive Testing (Amerikai Roncsolás mentes vizsgálati Társaság) által kibocsátott szabványokkal. Más országokban, amelyek megfelelnek az ISO előírásainak, a minősítést központi minősítő testületek végzik. A minősítés minden esetben a megfelelő oktatás, gyakorlat képzés és az ezekből letett vizsgák alapján történik.

A Fluke cég is végez termográfia képzést és ajánl is megfelelő képzési szervezeteket. Képzésünk ről információk ebben a  témában a www.globalfocus.hu oldalon érhető el!

Rendszeres infravörös vizsgálat segítheti a rendszerek biztonságos és hatékony üzemeltetését

Fluke-tix560-1

Az infravörös kamera ideális eszköz alkatrészek, vagy anyagok olyan hőmérséklet különbségeinek megkeresésében, melyek potenciális problémákra mutathatnak rá. Mindegy, hogy egy alkatrész, vagy célfelület hideg, vagy meleg pontjait, vagy megjelenő felületi hőmérsékletét keressük a fejlett fokuszáló rendszerrel, IR fúzió technikával, színriasztással és felhasználó által meghatározható pont markerekkel rendelkező hőkamerák segítenek a probléma gyors felderítésében.

Villamos rendszer

  • Kiegyensúlyozatlanság
  • Esetleges felharmónikus problémák
  • Túlterhelt rendszerek túlzott áramfelvétellel
  • Meglazult, vagy korrodált kötések, melyek ellenállás növekedést okoznak az áramkörben
  • Tekercsszigetelési hibák villamos motorokban
  • Alkatrész meghibásodás
  • Hibás vezetékezés
  • Alulméretezett alkatrészek

Elektromechanikus rendszerek

A Fluke infravörös kamerák érintés nélküli mérő képessége felbecsülhetetlen motorok, szivattyúk, hőcserélők, fogaskerék hajtások és kis sebességű forgó eszközök alábbi hibáinak megkeresésében:

  • Por, vagy törmelék okozta csökkentett légáram
  • Együttfutási problémák
  • Motor tekercsszigetelési ügyek
  • Hálózatminőségi problémák
  • Csapágy gondok
  • Kenési problémák

Termelési folyamatok üzemeltetése        

Az olyan alkalmazások, mint petroleum- és vegyi feldolgozók, cement, műanyag, vagy acélgyártás, amelyek szélsőséges hőmérsékleti viszonyokkal és veszélyhelyzetekkel járnak, mind előnyösen használhatják ki azt a részletességi szintet, amit a biztonságos távolságból készített, nagy felbontású infravörös képek nyújtanak. A 2x-es, vagy 4x-es teleobjektív lencséket használva még részletesebb képeket tudunk, még távolabbról biztonságosan készíteni forró, vagy veszélyes környezetben. A Fluke infravörös kamerákkal hőálló falazatokat, tartályokat, tárolókat, gőz rendszereket, fűtőberendezéseket és kemencéket vizsgálva, fel tudjuk deríteni:

  • A sérült falazat szigetelést
  • Elhasználódott, vagy szivárgó csővezetéket
  • Hibás szelepeket és gőzcsapdákat
  • Rendellenes hőáramot és hőfoklépcsőt
  • Folyadék, gáz és szilárd szinteket anyag tározókban, pl. tankokban és silókban 

Épület diagnosztika

A hőkép készítést régóta alkalmazzák lakossági és kommunális épületek vizsgálatánál az alábbiak felderítésére és elemzésére:

  • Helytelenül beépített, vagy hiányos szigetelés
  • Hővesztés, vagy túlmelegedés
  • Levegőszivárgás és rövidzár
  • Helytelenül szerelt, vagy sérült légtechnika
  • Földalatti gőz-, vagy vízvezeték szivárgás
  • Falak, mennyezet és tetők nedvesedése miatti szigetelés és épületszerkezet károsodás

Fluke hőkamerák (Hőképalkotók) alkalmazástechnikája

Hőtérkép készítés a karbantartó szemszögéből.

A hőtérkép készítés (termográfia) korábban költséges és nehézkes eljárás volt, melyet csak nagy ipari létesítmények és katonai szervezetek alkalmaztak.

Manapság ezek az eszközök egyre inkább megfizethetők, egyszerűbb a használatuk és széles körben elterjedtek.

Maga a technológia nagyon hatásos. Mivel az eszköz, a hőkamera működése alatt elkészíti egy adott eszköz hőképét az ügyfél rögtön tapasztalja a műszer előnyeit. Már egy egyszeri létesítmény bejárás során általában található egy várhatóan meghibásodó  alkatrész. Ez  nagyon hatásos bemutatóként szolgál, mely könnyen vezethet üzletkötéshez.

A karbantartó vállalkozó előnye a sokféle berendezéssel, készülékkel és ezek esetleges hibáival szerzett széleskörű tapasztalat. Más hibafeltárási módszerekhez hasonlóan a hőkamera használatakor is a megszerzett gyakorlatból kell meríteni a leolvasott értékek elemzéséhez.

Ha a karbantartó már rendszeres üzemfenntartási és hibakeresési szerződéssel rendelkezik, van értelme a hőkamera használatra kiterjeszteni a tevékenységét. A bejárási útvonal és a kritikus készülékek már ismertek, csak hozzá kell adni a hőkamerás vizsgálatokat. Így egy új eszköz áll rendelkezésére ,amikor hibajelentés érkezik. Villanyszerelőként megfelelő képzettséggel rendelkezik feszültség alatti munkavégzéshez, ezért a kamera használatához ilyen környezetben nem szükséges a megbízó segítsége.

Tipikus alkalmazások

Villamos karbantartók jellemzően megelőző karbantartáshoz és hibakereséshez használják a hőkamerát, időnként a létesítés során is.

Megelőző karbantartáshoz a karbantartó hőtérképeket készít a kulcsfontosságú egységekről (kapcsolótáblák, hajtások, motorok, stb.) legalább évente egyszer és minden látogatáskor az új képet összehasonlítja a korábbiakkal. Ha megjelenik egy forró pont ,ami korábban nem volt ott ,akkor az problémát jelez, amit ki kell vizsgálni, mielőtt bekövetkezik a hiba. A kamerával szállított szoftver segítségével fedésbe tudjuk hozni időnként a képeket és így következetes összehasonlításokat tudunk tenni.

Az ügyfél számára a következők is érvként szolgálhatnak:

  • A legtöbb berendezés meghibásodásával jelentős túlmelegedés párosul jóval azelőtt, hogy a végzetes hiba bekövetkezne.
  • A hőtérképet üzem közben kell elkészíteni, ezért emiatt nincs kényszerű leállás.
  • A hőtérképet biztonságos távolságból lehet elkészíteni ezért a biztonsági kockázat minimális. Kivétel a feszültség alatt álló részek érintés elleni védelme, ahol meg kell tenni az összes védelmi intézkedést.
  • A hőkamerával elérhetők másként nem mérhető alkatrészek pl. mennyezetre szerelt részek.
  • A hőkamerával szinte minden területen felderíthetők a közelgő hibák: villamos, mechanikus, üzemviteli, elektronikai stb.
  • Mivel a vizsgálat gyors nagy területek ellenőrizhetők egy-egy alkalommal, beleértve olyan problémákat ami fölött egyébként elsiklanánk.

Hibakereséskor a rendellenesen működő egységről készített hőtérképpel a hibaforrás legtöbbször megállapítható. Villamos berendezésben a forró pont jelzi, hogy melyik fázist , vagy csatlakozót kell ellenőrizni, motoroknál leszűkíthető a hiba a csapágyakra stb. A hiba elhárítása után készített újabb hőtérképpel ellenőrizhető , hogy az alkatrész túlmelegedése megszűnt, illetve nem melegszik-e most egy másik alkatrész.

Fluke TiS10 Infrared Camera 4

A fő alkalmazási területeket összefoglalva:

  • Háromfázisú elosztó rendszerben: elosztó táblák, biztosítók, huzalozás és csatlakozások, alállomások stb.
  • Elektromechanikus berendezések: motorok, szivattyúk, ventillátorok, kompresszorok, tekercselések, fogaskerék hajtások és konveyorok
  • Folyamat műszerezés: vezérlők, szabályozók, csövek, szelepek, gőzcsapdák, tartályok , edények.
  • Létesítmény fenntartás: fűtés, szellőztetés, légkondicionálás, épületszerkezetek,, tetők, szigetelések.

Hogyan működik?

A mai kezdő szintű kamerák kompakt kivitelűek, használatuk egyszerű és minimális betanítást igényelnek.

A Fluke hőkamerák  rendelkeznek az u.n. IR-Fusion ® technológiával mely kombinálja a látható képet az infra képpel a jobb azonosíthatóság, elemzés és képkezelés érdekében. A legtöbb esetben a kép készítéshez elég egyszerűen meghúzni a ravaszt. Ha kész vagyunk a képekkel csatlakoztassuk  a hőkamerát vagy a kártyaolvasót a számítógéphez , töltsük le a képeket az együtt szállított szoftverbe elemezzük őket közelebbről és készítsünk jegyzőkönyvet a tapasztaltakról. A kettős képek pontosan fedik egymást, kiemelve a részleteket jócskán megkönnyítve azon pontok megtalálását, ahol további vizsgálatra van szükség.

A következő néhány szakaszban a hőtérkép készítéssel kapcsolatos néhány egyéb szempontról lesz szó.

Emissziós tényező

Felületi hőmérséklet mérésekor a kamera gyakorlatilag a céltárgy által kibocsátott infravörös energiát méri. Az emissziós tényező azt mutatja meg, hogy ez az energia kibocsátás milyen mértékű. A szerves anyagok és festett , vagy oxidált felületek jellemző emissziós tényezője 0,95.Ugyanakkor egyes anyagok mint pl.  beton ,vagy csillogó fémfelületek gyengébb kibocsátók és a kibocsátott energia nem tükrözi a felület pontos hőmérsékletét. Ezekben az esetekben a kamerán be kell állítani a megfelelő emissziós tényezőt. Számos anyag emissziós tényezője megtalálható táblázatokban. Ezek ismeretében be tudjuk állítani az emissziós tényezőt. A mérések során kiegészítő mérésekkel (pl. kontakt hőmérővel) mi is megállapíthatunk emissziós tényezőket. Így pl. a biztosító fémsapkájának emissziós tényezője 0,6, tehát 0,95 helyett ezt az értéket kell a kamerán beállítani.

Szint és átfogás

Ha a befogott mező széles hőmérséklet tartományt fog át a szint (level) és az átfogás (gain,span) kézi állításával fókuszálhatunk a minket érdeklő hőmérsékletekre.

A legtöbben automatikus módban használják a kamerát. Ilyenkor a kamera az alapján amit lát automatikusan kijelöli a tartományt. Ha pl. 80-1200C-ot érzékel ,akkor az átfogást 75-1250C-ra választja.

Akkor azonban, ha az előtérben nagyon hideget, a háttérben nagyon meleget érzékel a kamera olyan nagy átfogást választ, hogy a felbontás rossz minőségű lesz. Ilyenkor kézi üzemmódban beállíthatjuk az átfogást és a szintet(ahol az átfogás elhelyezkedik) aszerint, hogy a hideg , vagy a meleg tárgyat akarjuk mérni.

A kamera kiválasztása

Természetesen sok kamera közül lehet választani. Íme néhány tényező , amit a tevékenységhez legjobban illő kamera kiválasztásánál figyelembe kell venni. Összehasonlító táblázatok a Global Focus honlapon a Termék összehasonlítás címszó alatt találhatók.

Radiometrikus kép

Egy digitális kijelzőn több ezer színpontból áll össze a kép. Ehhez hasonlóan a radiometrikus hőkamerákon is a hőképet  több ezer pont hőmérséklet adata alkotja. A nem radiometrikus hőkamera csak néhány középpont hőmérséklet értékét szolgáltatja. Ennek jelentősége úgy érzékelhető ha a radiometrikus képet

 PC-n a szoftverrel zoom-oltatjuk és így bármely részt részletesebben megtekinthető. Az eredmények jobb elemzését a változtatható emissziós tényező is segíti. Mindez azt eredményezi, hogy a felvétel készítésénél nem szükséges a helyszínen tökéletes képre törekedni, ami jelentős időmegtakarítást eredményez.

Hőmérséklet tartomány

Hacsak nem nagyon összetett apró termékek vagy nagy hőérzékenységű alkalmazásról van szó, általában nem a piacon található csúcsmodellek közül kell választanunk. A legtöbb karbantartó jól boldogul a

-10…+350 0 C hőmérséklet tartománnyal.

Pixel felbontás

A nagy felbontású kép szebb és meggyőzőbb. A pixel szám növelése azonban pénzbe kerül.

Ha a kamerával elsősorban villamos ,vagy mechanikus berendezések forró pontjait keressük, nem kell a legnagyobb felbontású kamerát választani. A felbontás legyen elég két azonos berendezés hőképének , vagy egy újabb és egy régebbi hőkép összehasonlításához, mivel ezeket várjuk el egy kezdő szintű hőkamerától.

Egyéb alapjellemzők

A vásárolt kamerának a következő minimum jellemzőkkel kell rendelkeznie.

  • Állítható emissziós tényező
  • Szint és átfogás választás
  • Pontosság +/-2% vagy +/- 2 0 C
  • Ismételhetőség +/-1% vagy +/- 1 0 C
  • Tölthető akkumulátor csomag (min 3 h működési idő)
  • 1 éves jótállás

    Sok kamerán van beállítható riasztás és korábbi kép lehívása helyszíni összehasonlítás céljából.

    fluke002

    BetanításA legtöbb kezdő szintű hőkamera tartozéka a használati útmutató és esetleg egy interaktív oktató program Ezen a szinten ez elegendő is a kamera használatához.

    A középtől a csúcs szintig terjedő kamerák bonyolultabbak ezért ezekhez biztosítani kell egy legalább kétnapos tanfolyamot. Ezen túlmenően  részt lehet venni tanfolyamokon melyek elvégzésével képesítést szerezhetünk. I szint az alapfokú, II és III szint után már képesített hőtérkép készítőnek nevezhetjük magunkat.

    Szoftver Minden kamerához szükséges szoftver. Ezzel kapcsolatban felmerülő kérdések: A szoftver benne van az árban? A jövőbeni frissítések is ingyenesek? Több személy által történő használata engedélyköteles?Könnyen készíthetők vele jó megjelenésű jegyzőkönyvek? E kérdések azért fontosak ,mert a jó szoftver fontos része a tartós üzleti kapcsolatnak.

    További információ:

    http://www.muszerhaz.hu/hokamerak

    Minden, amit a Hőkameráról tudni kell, egy weboldalon!

    http://www.hokamera-szakaruhaz.hu/

Épületburkolatok nedvességtartalmának feltérképezése

Az épületburkolatokban jelenlévő nedvességnek komoly következményei lehetnek, akár szivárgással, akár kicsapódással kerültek a szerkezetbe. Például a hőszigetelésben jelenlévő víz növeli a szigetelőréteg hőátbocsátó képességét, ami növeli az épület üzemeltetése során felhasznált energiát, akár fűtésről, akár hűtésről van szó. A nedvesedés amellett, hogy penészképződéshez vezet, az épület szerkezetét is gyengítheti, egy komoly beázás pedig akár az épületben tárolt értékekben is kárt tehet.

A termográfia – más néven hőképalkotás – szerencsére alkalmas a potenciális veszélyforrást jelentő épületnedvesedés kimutatására. A hőkamera kétdimenziós képen láthatóvá teszi a mért felület hőmérsékleti eltéréseit. A hőképeken látszódó hőmérsékletkülönbségek feltárják a falban és tetőburkolatban megbúvó nedvességet, mert a vizes részek az építőanyagoktól eltérően vezetik és tárolják a hőt. Felfűtés után, ahogy hűl az épület, a nedves területek lassabb hőleadásuk miatt hosszabb ideig hűlnek, ezért a hőképen meleg foltként mutatkoznak. Mit kell mérni? Az épületek külső homlokzatain, tetején kell mérni, miközben azok éppen hőleadási fázisban vannak, például egy forró, napsütéses nap végén. A keleti fekvésű falak mérhetők délután, a déli és nyugatiak pedig naplemente után. A belső és külső hőmérséklet között legyen legalább 15-20% különbség, hogy az eltérő hővezetésből fakadó hőmérsékletkülönbségek jól látszódjanak. Amikor esetleges nedves foltokat találunk, akkor a méréseket az épület belsejében kell folytatni. A belső falfelületek vizsgálatánál azonnal szemet szúrnak a csőrepedésből, szivárgásból eredő vízvesztések. A szivárgás elhárítása után a hőkamerával megállapítható, mely részeket lehet kiszárítani, melyek szorulnak cserére.

https://www.globalfocus.hu/termekkategoria/hokamera/

Mire kell figyelni?
Épületek felmérését érdemes hőképek készítésével kezdeni. A hagyományos nedvességmérő műszerekkel szemben a hőkamerának nincs szüksége fizikai kontaktusra a mérendő épületrésszel, nem kell fúrni, szondákat beütni, így azt nem roncsolja. További előnye, hogy felmérhetők vele a nehezen hozzáférhető területek, valamint egy méréssel nagy felületet lehet ellenőrizni. A rendszeres felülvizsgálatok nagyban hozzájárulnak az épületek élettartamának meghosszabbításához. Az új épületeket, különös tekintettel az új tetőkre, érdemes 6 és 9 hónappal az elkészültük után felmérni, amíg az építtető felléphet garanciális igényével. Ez alatt az idő alatt az épületnek változatos időjárási körülményeket kell elviselnie, így például egy hosszabb esős periódus után remek alkalom nyílik egy nedvességkereső felmérésre. Ha az épület megfelelő kivitelezéséről meggyőződtek a felek, akkor a további rendszeres ellenőrzéseket 2-5 éves intervallumokban érdemes elvégezni. Az esetleges elváltozások felderítéséhez a felvételeket össze kell vetni a korábban készített referencia hőképekkel. Szakértők becslése szerint a hőkamerás felmérések alapján végzett megelőző karbantartással az épületek tetejének élettartama megduplázható. A legjobb felbontás és képminőség elérése érdekében az épületek felmérését érdemes háromlábú kameraállványról végezni.

Mikor kell azonnal beavatkozni?
Bármely biztonsági vagy egészségügyi kockázatot hordozó elváltozást azonnal el kell hárítani. A következő lépésben a tetőn keresztüli beázást kell kijavítani, mely esetleg veszélyezteti az épületben folyó termelést, az ott tárolt értékeket. A legtöbb beázást a lapos tetők okozzák, ezek a legkényesebbek a szigetelésre, mivel esésük általában igen kicsi. Ezek mellett a lapos tetők javítására általában magasabb összegeket kell az épület fenntartójának költeni. A méréssel kapcsolatos megjegyzések. Az épületek hőkamerás nedvesedés vizsgálatakor meg kell jegyezni, hogy az infravörös hőképeken alapuló módszerek közül ez az egyik legtöbb kihívással járó alkalmazás. A fő problémát az épületek sokfélesége okozza. A mérések kiértékelésekor tisztában kell lenni az épület szerkezetének sajátosságaival, a felhasznált építőanyagok tulajdonságaival, az építkezéskor használt technológiával. Ismerni kell az épület fűtéséről gondoskodó hőforrások elhelyezkedését, hiszen ezek is befolyásolják a kívülről készített hőképeket. Ha a méréssel a nedvesedés gyanúját találjuk, akkor további célirányos felderítésre van szükség, például kontakt anyagnedvesség mérő műszerrel. Hőkamerával költséghatékonyan tudjuk megállapítani, hogy épületünk megfelelően szigetelt, ugyanakkor a hőmérsékleti anomáliák megléte nem jelenti egyértelműen a vizesedés jelenlétét. Az elvégzett méréseket a hőkamerához mellékelt szoftverrel mérési jegyzőkönyvbe lehet foglalni, ami a legjobb módja dokumentációnak. Ezeket a jegyzőkönyveket később össze lehet hasonlítani egymással, így meg lehet győződni az elvégzett javítások minőségéről, illetve folyamatosan nyomon követhető az épület állagának változása.

Minden, amit a hőkameráról tudni lehet, egy oldalon! Cikkek, videók, műszerek!